

Beginner Photography: Class 4

Qualities of a Lens

When considering the purchase of a new lens, there are *two primary factors* to keep in mind; the *focal length* and the *maximum aperture*.

Lenses capable of achieving *larger maximum apertures*, such as f/1.2 or f/2.8, are generally *more expensive* than lenses with smaller maximum apertures.

The *front element* in a *wide maximum aperture* lens is *larger* than a lens with a small maximum aperture. This larger size makes the lens *heavier*, which can become an issue when *carried for long periods of time*.

Just think, if just *one big fast lens* makes your kit *too heavy*, what will a bag with *several* fast lenses feel like?

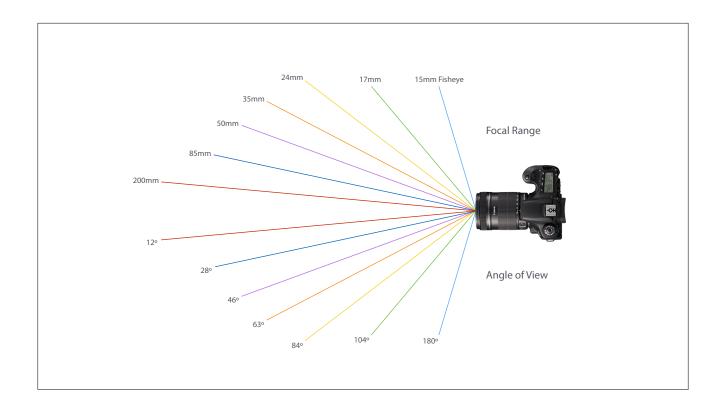
Fast and Slow

As it relates to *maximum aperture*, lenses are divided into two camps, and are considered as being either *fast* or *slow*.

Lenses capable of achieving *large maximum apertures*, such as f/1.2 or f/2.8, are considered *fast lenses*. They get their designation because they *allow more light to enter the camera* and permit *faster shutter speeds in low-light* conditions.

Conversely, lenses capable of achieving *maximum apertures of f/4 or smaller*, are considered *slow lenses*. They get their designation because they *allow less light to enter the camera*, thus permitting *slower shutter speeds* in the same low-light conditions.

TIP: use the ISO to increase shutter speed with slow lenses in low light.


Focal Length

The *focal length* determines the *angle of view* the lens will capture. With regard to *view angle*, lenses generally fall into one of *three categories*, and sometimes expand into two, or even all three.

Wide-Angle: a wide-angle lens has a *short focal length*, such as 17mm, 24mm, and 35mm. Wide-angle lenses are great for capturing *large areas* of a scene, and are ideal for *landscapes* and *architecture*.

Normal: a normal lens has a *medium focal length* around 50mm, which is similar to *human vision*. This focal length is suitable for *everyday shooting*.

Telephoto: a telephoto lens has a *longer focal length*, such as 85mm or greater, and allows you to capture photos from a *distance*. Telephotos have a *narrow angle of view* and are used for *sports, wildlife*, and *portraits*.

Focal Length

A lens has several *numbers* printed on the *side of the lens*, and/or on the *inside rim of the front element*. These numbers are known a *'markings'* and they tell you what the lens *can* and *cannot* do.

Measured in *millimeters*, the first number in this group relates to the *focal length* of the lens, which controls how *close* or *far away* objects will *appear* in the frame (24-70mm, 50mm, 85mm, 70-200mm, etc.).

In essence, the *larger the number*, the *closer* a subject will appear, and the *smaller the number*, the *farther away* a subject will appear.

Certain focal lengths are *more suited* for a situation than others, and the *kind of photo you want to capture* will dictate the focal length you use.

Prime and Telephoto

Lenses are further categorized as either a *prime* or *telephoto*, which is determined by how the lens allows you to work with the *focal range*.

For instance, a lens with a *single number*, such as 35mm, 50mm, or 85mm, is considered to be a *prime* or *fixed lens*.

These lenses are *restricted to one focal length* and are *not capable of zooming* in and out. If you want to zoom in on, or away from your subject, you will have to *zoom with your feet*.

A lens with a *range of numbers* displayed with a *dash in between*, such as 18-55mm, 24-70mm, or 70-200mm, is considered a *telephoto lens* that is capable zooming, or achieving *different focal lengths*.

Maximum Aperture (fixed)

To the *right of the focal length* is a number that represents the *maximum aperture* of the lens. This number is telling you what the *largest aperture value* of the lens is, not its *aperture range*.

For example, a lens with markings displayed as **70-200mm 1:2.8** would indicate a telephoto lens with a **focal length** in the range of **70-200mm**, and has a **maximum aperture value of f/2.8**.

This lens has a *single*, or *fixed maximum aperture* listed (f/2.8), which indicates that it is capable of *holding* this maximum aperture *regardless* of the focal range.

TIP: these are considered *pro lenses*, and come with a *higher price tag*.

Maximum Aperture (variable)

However, not all zoom lenses feature a single maximum aperture, but instead, have an aperture range that is dependent on the focal length. These lenses have what is known as a variable aperture.

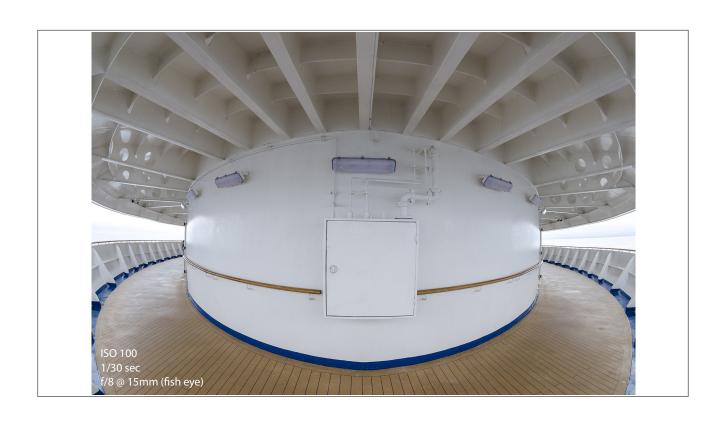
For example, a lens with markings displayed as 18-200mm 1:3.5-5.6 would indicate a telephoto lens with a focal length in the range of 18-200mm, and has a maximum aperture that will vary depending on which focal *length* is selected.

At the widest zoom (18mm), you are capable of achieving a maximum aperture of f/3.5. However, as you zoom in on your subject, the maximum aperture will decrease. By the time you get to 200mm, you will only be able to open the aperture as wide as f/5.6.

Variable Maximum Aperture

Wide-Angle

Wide-angle lenses can be used for a variety of situations, including weddings, architectural, and landscape photography. Their short focal lengths (35mm and under) permit a wider angle of view that captures larger areas of a scene.


Just be aware that these *wider angles of view* will introduce *distortion* in your photo, such as causing *horizons to bend* and *vertical objects to lean*. And, the wider the lens, the more *pronounced* the distortion will be.

There's even a super-wide-angle lens called a *fisheye*, which is primarily used to *exaggerate perspective*. You will see this lens used during *wedding receptions* where the entire dance floor is captured in one shot.

TIP: wide-angle lenses are *not* known for capturing *pleasing portraits*.

Normal


Lenses with a *medium focal length* around 50mm are referred to as *normal*. Their focal length is similar to *human vision* and allow you to capture a more *natural perspective* of your subjects.

While this focal range can be found in many zooms, it is typically utilized on a *prime lens*, which will give you access to *wider maximum apertures*.

Many zooms have a maximum aperture of f/4, or even f/2.8, but shooting at the *widest aperture setting* of any lens will always introduce a form of *distortion* known as *diffraction*.

For example, a photo taken at *f*/2.8 on a *prime lens* with a maximum aperture of *f*/2 *or wider*, will have *better image quality* than one taken at *f*/2.8 on a *zoom lens* with a maximum aperture of *f*/2.8.

Telephoto

Telephoto lenses have a *long focal length*, with the *70-200mm* variety being the most common. They have a *narrow angle of view* and produce better *shallow depth of field* than lenses with a shorter focal length.

Whether you can't get *close* to your subject, or simply don't want to, telephoto lenses allow you to *capture photos from a distance*, which makes them ideal for *sports* or *wildlife* photography.

Compression, where the **distance between objects** in a scene appears to be **compressed**, or closer together, is another **benefit** of using longer focal lengths. We will be covering that soon...

TIP: this lens also covers the **85mm** focal range (short-telephoto), which is considered by many to be the *ideal focal length for portraits*.

Macro Lenses

If you want to get *really, really close to your subject*, you will achieve the best results from a *dedicated macro lens*.

Some lenses have a *macro setting* that's designed to allow you to focus on subjects *close to the camera*, but unfortunately, it's *not going to come close* to the power of a true macro lens.

There are *close-up lenses* (not a macro lens) that do a *much better job* at getting close to your subject than the macro setting does. They look more like *screw-on filters* and attach to your lens in a similar way.

However, if you're *serious* about this specialized kind of photography, you will want to *invest* in a *dedicated macro lens*. These lenses are *fixed in focal length* and come in *several options*, with the most *common* focal length being *100mm* (great for *portraits*, too).

Digital Image Sensors

When an image is captured using a film camera, the image is recorded directly onto the film... your DSLR uses an *image sensor* instead.

Image sensors come in *different sizes* and are described as either *full-frame* or *cropped* (ASP-C). Full-frame sensors are *equal to the size* of a typical *35mm film negative*, whereas cropped sensors are *smaller*.

ASP-C sensors use a *crop factor* (magnification) to *mimic the size of a full-frame sensor*, which can have an effect on a lens' *focal length*.

For example, if you put an 50mm lens on a camera with a full-frame sensor, it will give you a true 50mm angle of view. However, if you put the same 50mm lens on a camera with a cropped sensor, it will give you an angle of view closer to 75mm (Nikon) or 80mm (Canon).

Full-Frame Sensor (no crop factor)

ASP-C Sensor (crop factor of 1.5 for Nikon and 1.6 for Canon)

 $50 \text{mm} \times 1.5 = 75 \text{mm}$

 $50 \text{mm} \times 1.6 = 80 \text{mm}$

Multiply the lens focal length by the crop factor to get the equivalent focal length.

Crop Factor Pros and Cons

There isn't much difference in quality between the two sizes, but a notable benefit of a *cropped sensor* is being able to achieve *greater close up shots*. For example, because of the crop factor, a *200mm telephoto lens* will behave more like a *300mm telephoto lens*.

Conversely, the crop factor *works against you* when shooting with a *wide-angle lens*. Because of the magnification involved, you will *lose some of the view angle* on a cropped sensor.

If you want to use a **24mm lens** to capture a **landscape**, it will provide an **angle of view** closer to **35mm** when placed on a **cropped sensor** camera.

So, if you really want a **24mm(ish) angle of view**, you would need to use a lens with a **shorter focal length**, such as 15mm or 17mm.

Image Stabilization

Image Stabilization is a handy feature that helps 'settle' your camera and permits the use of shutter speeds **2-4 stops slower**, which is useful for taking **hand-held shots in low-light conditions**.

If you are taking images at high shutter speeds like 1/500th of a second, you essentially have no real use for image stabilization... the fast shutter speed cancels out any camera shake.

Image stabilization is useful in hand-held situations where you *don't have enough light to get shutter speed you need*.

- Canon: IS (Image Stabilization)
 Sigma: OS (Optical Stabilization)
- Nikon: VR (Vibration Reduction)
 Tamron: VC (Vibration Compensation)

Do You Need Stabilization?

While image stabilization is great, *nobody really needs it*. Sure, it's a nice feature to have when shooting hand-held in low-light conditions, but it's becoming *less of an issue* as each new camera that comes out is getting *better at handling higher ISO levels*.

Most beginner *kit lenses* come with *image stabilization*, which is helpful because they have *limited maximum apertures*, such as f/3.5 or f/4.

The *best image stabilizer is your tripod*, which will come in handy when you are shooting formal portraits where everyone is behaving themselves.

However, children rarely give us that luxury, and essentially makes using a *tripod impractical*... and this is where *stabilization* and/or having a camera capable of handling *high ISO settings* fits in nicely.

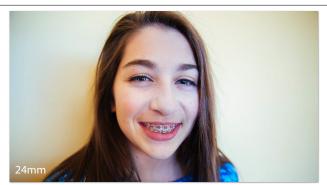
Lens Compression

Lens compression is a phenomenon that affects the *visual appearance* between the *background* and the *subject* when captured at *various focal lengths* and *distances*.

For instance, the spatial distance between the *subject* and *background* will appear to be *farther* with *shorter focal lengths*.

Conversely, the spatial distance between the *subject* and *background*, while keeping the *subject the same size*, will appear to be *closer*, or *compressed*, with *longer focal lengths*.

This *optical illusion* happens because the *narrow angle of view* created by a telephoto lens makes *near* and *far* objects *appear closer together* than they actually are.


Compression with Portraits

Lens compression is also important when it comes to taking *natural looking portraits*... not natural facial expressions, but *physical features*.

It is always preferred to capture portraits with as little *facial distortion* as possible, which is why lenses with a *longer focal length* in the range of *85mm* to *135mm* are most often used.

Wide-angle lenses ranging from 14mm to 35mm are generally not used for portraits because they can distort, or bloat, people's faces.

A 50mm, or normal lens, can be used for full length or even waist up portraits, and is often used for reportage photography. An 85mm lens is good for bust shots, while a 135mm lens is considered the ideal length for tight shots showing just the face.

Tips from the Field

Use your lens hood: the main purpose of a lens hood is to *block any light falling onto your lens* and reduce any unsightly *lens flares*. But it has another advantage (besides making your lens look bigger), and that is to *protect your front element* from damage.

Changing lenses: if possible, *avoid changing lenses* in *open areas* with *high wind*, such as the beach or a baseball field.

When you remove the lens from the camera body, you are left with a **big opening** that is capable of **collecting unwanted debris**. This debris, also known as **sensor dust**, is somehow magically attracted to your sensor.

TIP: if your sensor becomes 'dirty,' don't try to clean it yourself. Instead, take it to *Camtronics Camera Repair* in Grandview.

Shopping for Glass

Getting a *new lens* basically comes down to the *kind of photos* you are *interested* in capturing. Are you interested in landscapes, lifestyle family, sports, macro, portraits? (relates to *focal length*)

The *conditions* you will be shooting in will help narrow your options even further. Will you be shooting in places with an *abundance of light*, or will you be in places with *low-light levels*? (relates to *maximum aperture*)

Remember, the *more gear* you have the *heavier your camera bag* will get. This is an important consideration, especially if you're *traveling*. A good all-purpose lens, such as an *18-200mm*, is a great option for travelers.

If you're *unsure of which lens* (or camera) you want, you can always *rent gear* you're thinking of buying before making an investment.

Assignments

Take a good look at your lens, or lenses, and be sure you *understand* what you're working with. Do you have a *zoom lens*, *wide-angle*, a *prime*? What is your *maximum aperture* and *focal length*?

If you have a zoom lens, practice *image compression* by taking photos at *various focal lengths* to see how that affects your images.

Remember, each time you *increase the focal length* (70mm to 135mm), you will need to *increase the distance* between you and the subject to keep it/them the *same size* in the frame.

Be sure to *Like* Shutterbug Photography Training on *Facebook*: www.facebook.com/shutterbugtraining/